2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

Technical Program

Paper Detail

Paper IDSPE-51.5
Paper Title PERCEPTUAL LOSS BASED SPEECH DENOISING WITH AN ENSEMBLE OF AUDIO PATTERN RECOGNITION AND SELF-SUPERVISED MODELS
Authors Saurabh Kataria, Jesús Villalba, Najim Dehak, Johns Hopkins University, United States
SessionSPE-51: Speech Enhancement 7: Single-channel Processing
LocationGather.Town
Session Time:Friday, 11 June, 13:00 - 13:45
Presentation Time:Friday, 11 June, 13:00 - 13:45
Presentation Poster
Topic Speech Processing: [SPE-ENHA] Speech Enhancement and Separation
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Virtual Presentation  Click here to watch in the Virtual Conference
Abstract Deep learning based speech denoising still suffers from the challenge of improving perceptual quality of enhanced signals. We introduce a generalized framework called Perceptual Ensemble Regularization Loss (PERL) built on the idea of perceptual losses. Perceptual loss discourages distortion to certain speech properties and we analyze it using six large-scale pre-trained models: speaker classification, acoustic model, speaker embedding, emotion classification, and two self-supervised speech encoders (PASE+, wav2vec 2.0). We first build a strong baseline (w/o PERL) using Conformer Transformer Networks on the popular enhancement benchmark called VCTK-DEMAND. Using auxiliary models one at a time, we find acoustic event and self-supervised model PASE+ to be most effective. Our best model (PERL-AE) only uses acoustic event model (utilizing AudioSet) to outperform state-of-the-art methods on major perceptual metrics. To explore if denoising can leverage full framework, we use all networks but find that our seven-loss formulation suffers from the challenges of Multi-Task Learning. Finally, we report a critical observation that state-of-the-art Multi-Task weight learning methods cannot outperform hand tuning, perhaps due to challenges of domain mismatch and weak complementarity of losses.