2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSS-14.1
Paper Title COMPRESSIVE WIDEBAND SPECTRUM SENSING AND CARRIER FREQUENCY ESTIMATION WITH UNKNOWN MIMO CHANNELS
Authors Hongwei Wang, Jilin Wang, Jun Fang, University of Electronic Science and Technology of China, China; Hongbin Li, Stevens Institute of Technology, United States
SessionSS-14: Robust Sensing and Detection in Congested Spectrum
LocationGather.Town
Session Time:Friday, 11 June, 11:30 - 12:15
Presentation Time:Friday, 11 June, 11:30 - 12:15
Presentation Poster
Topic Special Sessions: Robust Sensing and Detection in Congested Spectrum
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract We consider the problem of joint wideband spectrum sensing and carrier frequency estimation in a sub-Nyquist sampling framework. Specifically, a multi-antenna receiver is used to estimate the carrier frequencies and power spectra of multiple narrowband transmissions that spread over a wide frequency band. Unlike existing works that assume the source signals impinge on the receiver via a line-of-sight (LOS) path, we consider a more practical multiple-input multiple-output (MIMO) channel characterized by multipath propagation. A new sub-Nyquist sampling architecture is proposed, where each antenna output passes through two channels, namely, a direct path and a delayed path with a pre-determined time delay. The signal at each channel is then sampled by a synchronized low-rate analog-to-digital converter (ADC). We utilize the collected data samples to build a set of cross-correlation matrices with different time lags and develop a CANDECOMP/PARAFAC (CP) decomposition-based method to recover the carrier frequencies and power spectra of the source signals. Simulation results are presented to illustrate the effectiveness of the proposed method.