2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLSP-3.2
Paper Title EVOLVING QUANTIZED NEURAL NETWORKS FOR IMAGE CLASSIFICATION USING A MULTI-OBJECTIVE GENETIC ALGORITHM
Authors Yong Wang, Xiaojing Wang, Xiaoyu He, Central South University, China
SessionMLSP-3: Deep Learning Training Methods 3
LocationGather.Town
Session Time:Tuesday, 08 June, 13:00 - 13:45
Presentation Time:Tuesday, 08 June, 13:00 - 13:45
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-DEEP] Deep learning techniques
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Recently, many model quantization approaches have been investigated to reduce the model size and improve the inference speed of convolutional neural networks (CNNs). However, these approaches usually inevitably lead to a decrease in classification accuracy. To address this problem, this paper proposes a mixed precision quantization method combined with channel expansion of CNNs by using a multi-objective genetic algorithm, called MOGAQNN. In MOGAQNN, each individual in the population is used to encode a mixed precision quantization policy and a channel expansion policy. During the evolution process, the two polices are optimized simultaneously by the non-dominated sorting genetic algorithm II (NSGA-II). Finally, we choose the best individual in the last population and evaluate its performance on the test set as the final performance. The experimental results of five popular CNNs on two benchmark datasets demonstrate that MOGAQNN can greatly reduce the model size and improve the classification accuracy at the same time.