2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDBIO-2.5
Paper Title IDENTIFICATION OF UTERINE CONTRACTIONS BY AN ENSEMBLE OF GAUSSIAN PROCESSES
Authors Liu Yang, Stony Brook University, United States; Cassandra Heiselman, J. Gerald Quirk, Stony Brook University Hospital, United States; Petar M. Djurić, Stony Brook University, United States
SessionBIO-2: Biomedical Signal Processing: Detection and Estimation
LocationGather.Town
Session Time:Tuesday, 08 June, 13:00 - 13:45
Presentation Time:Tuesday, 08 June, 13:00 - 13:45
Presentation Poster
Topic Biomedical Imaging and Signal Processing: [BIO] Biomedical signal processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Identifying uterine contractions with the aid of machine learning methods is necessary vis-á-vis their use in combination with fetal heart rates and other clinical data for the assessment of a fetus wellbeing. In this paper, we study contraction identification by processing noisy signals due to uterine activities. We propose a complete four-step method where we address the imbalanced classification problem with an ensemble Gaussian process classifier, where the Gaussian process latent variable model is used as a decision-maker. The results of both simulation and real data show promising performance compared to existing methods.