2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPE-15.6
Paper Title LVCNet: Efficient Condition-Dependent Modeling Network for Waveform Generation
Authors Zhen Zeng, Jianzong Wang, Ning Cheng, Jing Xiao, Ping An Technology (Shenzhen) Co., Ltd., China
SessionSPE-15: Speech Synthesis 3: Vocoder
LocationGather.Town
Session Time:Wednesday, 09 June, 13:00 - 13:45
Presentation Time:Wednesday, 09 June, 13:00 - 13:45
Presentation Poster
Topic Speech Processing: [SPE-SYNT] Speech Synthesis and Generation
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract In this paper, we propose a novel conditional convolution network, named location-variable convolution, to model the dependencies of the waveform sequence. Different from the use of unified convolution kernels in WaveNet to capture the dependencies of arbitrary waveform, the location-variable convolution uses convolution kernels with different coefficients to perform convolution operations on different waveform intervals, where the coefficients of kernels is predicted according to conditioning acoustic features, such as Mel-spectrograms. Based on location-variable convolutions, we design LVCNet for waveform generation, and apply it in Parallel WaveGAN to design more efficient vocoder. Experiments on the LJSpeech dataset show that our proposed model achieves a four-fold increase in synthesis speed compared to the original Parallel WaveGAN without any degradation in sound quality, which verifies the effectiveness of location-variable convolutions.