2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPCOM-8.5
Paper Title Real-Time Radio Modulation Classification with an LSTM Auto-Encoder
Authors Ziqi Ke, Haris Vikalo, University of Texas at Austin, United States
SessionSPCOM-8: Deep learning for communications
LocationGather.Town
Session Time:Friday, 11 June, 14:00 - 14:45
Presentation Time:Friday, 11 June, 14:00 - 14:45
Presentation Poster
Topic Signal Processing for Communications and Networking: [SPC-ML] Machine Learning for Communications
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Identifying modulation type of a received radio signal is a challenging problem encountered in many applications including radio interference mitigation and spectrum allocation. This problem is rendered challenging by the existence of a large number of modulation schemes and numerous sources of interference. Existing methods for monitoring spectrum readily collect large amounts of radio signals. However, existing state-of-the-art approaches to modulation classification struggle to reach desired levels of accuracy with computational efficiency practically feasible for implementation on low-cost computational platforms. To this end, we propose a learning framework based on an LSTM denoising auto-encoder designed to extract robust and stable features from the noisy received signals, and detect the underlying modulation scheme. The method uses a compact architecture that may be implemented on low-cost computational devices while achieving or exceeding state-of-the-art classification accuracy. Experimental results on realistic synthetic and over-the-air radio data show that the proposed framework reliably and efficiently classifies radio signals, and often significantly outperform state-of-the-art approaches.