2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDAUD-34.1
Paper Title Robust Recursive Least M-estimate Adaptive Filter for the Identification of Low-Rank Acoustic Systems
Authors Hongsen He, Southwest University of Science and Technology, China; Jingdong Chen, Northwestern Polytechnical University, China; Jacob Benesty, University of Quebec, Canada; Yi Yu, Southwest University of Science and Technology, China
SessionAUD-34: Acoustic System Identification and Modeling
LocationGather.Town
Session Time:Friday, 11 June, 14:00 - 14:45
Presentation Time:Friday, 11 June, 14:00 - 14:45
Presentation Poster
Topic Audio and Acoustic Signal Processing: [AUD-SIRR] System Identification and Reverberation Reduction
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract To identify acoustic systems (which are low-rank in nature) in non-Gaussian and Gaussian noise, a robust recursive least M-estimate adaptive filtering algorithm is developed in this paper by applying the nearest Kronecker product to decompose the acoustic impulse response. Two M-estimators, i.e., the Cauchy and Welsch estimators, are employed to define the cost function of the adaptive filter, leading to a class of numerically stable adaptive filtering algorithms, which are robust to non-Gaussian noise. The effectiveness of the developed algorithm is validated in acoustic environments with both Gaussian and non-Gaussian noise.