2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSS-8.6
Paper Title HARDWARE IMPLEMENTATION OF ITERATIVE PROJECTION-AGGREGATION DECODING OF REED-MULLER CODES
Authors Marzieh Hashemipour-Nazari, Kees Goossens, Alexios Balatsoukas-Stimming, Eindhoven University of Technology, Netherlands
SessionSS-8: Near-ML Decoding of Error-correcting Codes: Algorithms and Implementation
LocationGather.Town
Session Time:Wednesday, 09 June, 16:30 - 17:15
Presentation Time:Wednesday, 09 June, 16:30 - 17:15
Presentation Poster
Topic Special Sessions: Near-ML Decoding of Error-correcting Codes: Algorithms and Implementation
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract In this work, we present a simplification and a corresponding hardware architecture for hard-decision recursive projection-aggregation (RPA) decoding of Reed-Muller (RM) codes. In particular, we transform the recursive structure of RPA decoding into a simpler and iterative structure with minimal error-correction degradation. Our simulation results for RM(7,3) show that the proposed simplification has a small error-correcting performance degradation (0.005 in terms of channel crossover probability) while reducing the average number of computations by up to 40%. In addition, we describe the first fully parallel hardware architecture for simplified RPA decoding. We present FPGA implementation results for an RM(6,3) code on a Xilinx Virtex-7 FPGA showing that our proposed architecture achieves a throughput of 171 Mbps at a frequency of 80 MHz