2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPTM-1.5
Paper Title SCORE-BASED CHANGE DETECTION FOR GRADIENT-BASED LEARNING MACHINES
Authors Lang Liu, University of Washington, United States; Joseph Salmon, University of Montpellier, France; Zaid Harchaoui, University of Washington, United States
SessionSPTM-1: Detection Theory and Methods 1
LocationGather.Town
Session Time:Tuesday, 08 June, 13:00 - 13:45
Presentation Time:Tuesday, 08 June, 13:00 - 13:45
Presentation Poster
Topic Signal Processing Theory and Methods: [SSP] Statistical Signal Processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract The widespread use of machine learning algorithms calls for automatic change detection algorithms to monitor their behavior over time. As a machine learning algorithm learns from a continuous, possibly evolving, stream of data, it is desirable and often critical to supplement it with a companion change detection algorithm to facilitate its monitoring and control. We present a generic score-based change detection method that can detect a change in any number of components of a machine learning model trained via empirical risk minimization. This proposed statistical hypothesis test can be readily implemented for such models designed within a differentiable programming framework. We establish the consistency of the hypothesis test and show how to calibrate it to achieve a prescribed false alarm rate. We illustrate the versatility of the approach on synthetic and real data.