2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDAUD-25.3
Paper Title BANDWIDTH EXTENSION IS ALL YOU NEED
Authors Jiaqi Su, Yunyun Wang, Adam Finkelstein, Princeton University, United States; Zeyu Jin, Adobe Research, United States
SessionAUD-25: Signal Enhancement and Restoration 2: Audio Coding and Restoration
LocationGather.Town
Session Time:Thursday, 10 June, 16:30 - 17:15
Presentation Time:Thursday, 10 June, 16:30 - 17:15
Presentation Poster
Topic Audio and Acoustic Signal Processing: [AUD-SEN] Signal Enhancement and Restoration
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Speech generation and enhancement have seen recent breakthroughs in quality thanks to deep learning. These methods typically operate at a limited sampling rate of 16-22kHz due to computational complexity and available datasets. This limitation imposes a gap between the output of such methods and that of high-fidelity (≥44kHz) real-world audio applications. This paper proposes a new bandwidth extension (BWE) method that expands 8-16kHz speech signals to 48kHz. The method is based on a feed-forward WaveNet architecture trained with a GAN-based deep feature loss. A mean-opinion-score (MOS) experiment shows significant improvement in quality over state-of-the-art BWE methods. An AB test reveals that our 16-to-48kHz BWE is able to achieve fidelity that is typically indistinguishable from real high-fidelity recordings. We use our method to enhance the output of recent speech generation and denoising methods, and experiments demonstrate significant improvement in sound quality over these baselines. We propose this as a general approach to narrow the gap between generated speech and recorded speech, without the need to adapt such methods to higher sampling rates.