2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDMLSP-16.4
Paper Title ONLINE UNSUPERVISED LEARNING USING ENSEMBLE GAUSSIAN PROCESSES WITH RANDOM FEATURES
Authors Georgios V. Karanikolas, Qin Lu, Georgios B. Giannakis, University of Minnesota, United States
SessionMLSP-16: ML and Graphs
LocationGather.Town
Session Time:Wednesday, 09 June, 14:00 - 14:45
Presentation Time:Wednesday, 09 June, 14:00 - 14:45
Presentation Poster
Topic Machine Learning for Signal Processing: [MLR-SLER] Sequential learning; sequential decision methods
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Gaussian process latent variable models (GPLVMs) are powerful, yet computationally heavy tools for nonlinear dimensionality reduction. Existing scalable variants utilize low-rank kernel matrix approximants that in essence subsample the embedding space. This work develops an efficient online approach based on random features by replacing spatial with spectral subsampling. The novel approach bypasses the need for optimizing over spatial samples, without sacrificing performance. Different from GPLVM, whose performance depends on the choice of the kernel, the proposed algorithm relies on an ensemble of kernels - what allows adaptation to a wide range of operating environments. It further allows for initial exploration of a richer function space, relative to methods adhering to a single fixed kernel, followed by sequential contraction of the search space as more data become available. Tests on benchmark datasets demonstrate the effectiveness of the proposed method.