2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDAUD-8.2
Paper Title Multichannel-based learning for audio object extraction
Authors Daniel Arteaga, Jordi Pons, Dolby Laboratories, Spain
SessionAUD-8: Audio and Speech Source Separation 4: Multi-Channel Source Separation
LocationGather.Town
Session Time:Wednesday, 09 June, 13:00 - 13:45
Presentation Time:Wednesday, 09 June, 13:00 - 13:45
Presentation Poster
Topic Audio and Acoustic Signal Processing: [AUD-SEP] Audio and Speech Source Separation
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract The current paradigm for creating and deploying immersive audio content is based on audio objects, which are composed of an audio track and position metadata. While rendering an object-based production into a multichannel mix is straightforward, the reverse process involves sound source separation and estimating the spatial trajectories of the extracted sources. Besides, cinematic object-based productions are often composed by dozens of simultaneous audio objects, which poses a scalability challenge for audio object extraction. Here, we propose a novel deep learning approach to object extraction that learns from the multichannel renders of object-based productions, instead of directly learning from the audio objects themselves. This approach allows tackling the object scalability challenge and also offers the possibility to formulate the problem in a supervised or an unsupervised fashion. Since, to our knowledge, no other works have previously addressed this topic, we first define the task and propose an evaluation methodology, and then discuss under what circumstances our methods outperform the proposed baselines.