2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDIVMSP-4.4
Paper Title IMAGE CODING FOR MACHINES: AN END-TO-END LEARNED APPROACH
Authors Nam Le, Tampere University, Finland; Honglei Zhang, Francesco Cricri, Ramin Ghaznavi Youvalari, Nokia Technologies, Finland; Esa Rahtu, Tampere University, Finland
SessionIVMSP-4: Image & Video Coding 2
LocationGather.Town
Session Time:Tuesday, 08 June, 14:00 - 14:45
Presentation Time:Tuesday, 08 June, 14:00 - 14:45
Presentation Poster
Topic Image, Video, and Multidimensional Signal Processing: [IVCOM] Image & Video Communications
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Over recent years, deep learning-based computer vision systems have been applied to images at an ever-increasing pace, oftentimes representing the only type of consumption for those images. Given the dramatic explosion in the number of images generated per day, a question arises: how much better would an image codec targeting machine-consumption perform against state-of-the-art codecs targeting human-consumption? In this paper, we propose an image codec for machines which is neural network (NN) based and end-to-end learned. In particular, we propose a set of training strategies that address the delicate problem of balancing competing loss functions, such as computer vision task losses, image distortion losses, and rate loss. Our experimental results show that our NN-based codec outperforms the state-of-the-art Versatile Video Coding (VVC) standard on the object detection and instance segmentation tasks, achieving -37.87% and -32.90% of BD-rate gain, respectively, while being fast thanks to its compact size. To the best of our knowledge, this is the first end-to-end learned machine-targeted image codec.