2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDAUD-20.6
Paper Title TOWARDS EXPLAINING EXPRESSIVE QUALITIES IN PIANO RECORDINGS: TRANSFER OF EXPLANATORY FEATURES VIA ACOUSTIC DOMAIN ADAPTATION
Authors Shreyan Chowdhury, Gerhard Widmer, Johannes Kepler University Linz, Austria
SessionAUD-20: Music Information Retrieval and Music Language Processing 3: Topics in Music Information Retrieval
LocationGather.Town
Session Time:Thursday, 10 June, 14:00 - 14:45
Presentation Time:Thursday, 10 June, 14:00 - 14:45
Presentation Poster
Topic Audio and Acoustic Signal Processing: [AUD-MIR] Music Information Retrieval and Music Language Processing
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Emotion and expressivity in music have been topics of considerable interest in the field of music information retrieval. In recent years, mid-level perceptual features have been suggested as means to explain computational predictions of musical emotion. We find that the diversity of musical styles and genres in the available dataset for learning these features is not sufficient for models to generalise well to specialised acoustic domains such as solo piano music. In this work, we show that by utilising unsupervised domain adaptation together with receptive-field regularised deep neural networks, it is possible to significantly improve generalisation to this domain. Additionally, we demonstrate that our domain-adapted models can better predict and explain expressive qualities in classical piano performances, as perceived and described by human listeners.