2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDIVMSP-3.1
Paper Title PREDICTIVE CODING FOR LOSSLESS DATASET COMPRESSION
Authors Madeleine Barowsky, Alexander Mariona, Flavio P. Calmon, Harvard University, United States
SessionIVMSP-3: Image & Video Coding 1
LocationGather.Town
Session Time:Tuesday, 08 June, 14:00 - 14:45
Presentation Time:Tuesday, 08 June, 14:00 - 14:45
Presentation Poster
Topic Image, Video, and Multidimensional Signal Processing: [IVCOM] Image & Video Communications
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Lossless compression of datasets is a problem of significant theoretical and practical interest. It appears naturally in the task of storing, sending, or archiving large collections of information for scientific research. We can greatly improve encoding bitrate if we allow the compression of the original dataset to decompress to a permutation of the data. We prove the equivalence of dataset compression to compressing a permutation-invariant structure of the data and implement such a scheme via predictive coding. We benchmark our compression procedure against state-of-the-art compression utilities on the popular machine-learning datasets MNIST and CIFAR-10 and outperform for multiple parameter sets.