2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information

2021 IEEE International Conference on Acoustics, Speech and Signal Processing

6-11 June 2021 • Toronto, Ontario, Canada

Extracting Knowledge from Information
Login Paper Search My Schedule Paper Index Help

My ICASSP 2021 Schedule

Note: Your custom schedule will not be saved unless you create a new account or login to an existing account.
  1. Create a login based on your email (takes less than one minute)
  2. Perform 'Paper Search'
  3. Select papers that you desire to save in your personalized schedule
  4. Click on 'My Schedule' to see the current list of selected papers
  5. Click on 'Printable Version' to create a separate window suitable for printing (the header and menu will appear, but will not actually print)

Paper Detail

Paper IDSPE-32.4
Paper Title SEMI-SUPERVISED SPEECH RECOGNITION VIA GRAPH-BASED TEMPORAL CLASSIFICATION
Authors Niko Moritz, Takaaki Hori, Jonathan Le Roux, Mitsubishi Electric Research Laboratories (MERL), United States
SessionSPE-32: Speech Recognition 12: Self-supervised, Semi-supervised, Unsupervised Training
LocationGather.Town
Session Time:Thursday, 10 June, 13:00 - 13:45
Presentation Time:Thursday, 10 June, 13:00 - 13:45
Presentation Poster
Topic Speech Processing: [SPE-GASR] General Topics in Speech Recognition
IEEE Xplore Open Preview  Click here to view in IEEE Xplore
Abstract Semi-supervised learning has demonstrated promising results in automatic speech recognition (ASR) by self-training using a seed ASR model with pseudo-labels generated for unlabeled data. The effectiveness of this approach largely relies on the pseudo-label accuracy, for which typically only the 1-best ASR hypothesis is used. However, alternative ASR hypotheses of an N-best list can provide more accurate labels for an unlabeled speech utterance and also reflect uncertainties of the seed ASR model. In this paper, we propose a generalized form of the connectionist temporal classification (CTC) objective that accepts a graph representation of the training labels. The newly proposed graph-based temporal classification (GTC) objective is applied for self-training with WFST-based supervision, which is generated from an N-best list of pseudo-labels. In this setup, GTC is used to learn not only a temporal alignment, similarly to CTC, but also a label alignment to obtain the optimal pseudo-label sequence from the weighted graph. Results show that this approach can effectively exploit an N-best list of pseudo-labels with associated scores, considerably outperforming standard pseudo-labeling, with ASR results approaching an oracle experiment in which the best hypotheses of the N-best lists are selected manually.